Welcome to the Körmann Research Group

Welcome! The research group of Fritz Körmann, a collaboration between the Max-Planck-Institut in Düsseldorf and the Delft University of Technology, aims at the computational design and accelerated exploration of materials throughout parameter-free (ab initio) computer simulations. A main focus is currently on complex concentrated alloys (CCAs) and related concepts such as multi-principal element alloys and high entropy alloys (HEAs). Mechanical, magnetic, thermodynamic and materials properties are investigated by means of computer simulations in close collaboration with experimental and theoretical partners worldwide.

News from the group in 2021

June 2021 -- Couple of papers on HEAs published, have a look into the recent publications below

October 2020 -- New paper in Computational Materials Science by Lifang, open access here!

August 2020 -- New paper in Applied Surface Science by Alberto, open access here!

May 2020 -- New paper in Materials & Design here here!

April 2020 -- New paper in Physiscal Review B with Lifang here here!

March 2020 III -- New paper in Physiscal Review Materials on interplay of magnetism and stacking fault energies, joint experimental-theoretical work with Biswanath here here!

March 2020 II -- New paper in Physiscal Review B on interplay vibrations and magnetism by Biswanath here here!

March 2020 -- New paper in Physiscal Review Materials atomic pressure fluctuations in bcc HEAs here here!

January 2020 III -- New paper in Physiscal Review Materials on impact of Cu on magnetic properties of HEAs by Biswanath here here!

January 2020 II -- New paper in Scripta Mat. on impact of C on HEAs, find it here!

January 2020 -- Welcome to our new group member Lifang!

December 2019 -- New paper in Acta on HEAs, find it here!

November 2019 -- Impact of C on SFE for HEAs by Yuji in PRM, find it here!

October 2019 -- Welcome to our new group member Alberto!

August 2019 -- Welcome to our new group member Konstantin!

July 2019 -- Vibrations for HEAs based on ab initio + machine learning with Yuji and Prashanth et al., find it here!

June 2019 -- Investigating magnetic properties of FeCoNi with Yuji and experimentalists, find it here!

May 2019 -- Correlation atomic level pressure and strength in HEAs studied by combining ab initio and experiments, together with Yuji, find it here!

May 2019 -- Phase stability of HEAs studied by combining ab initio with machine learning techniques, here!

February 2019 -- Very strong VCoNi alloy, joined work with experimentalists and Yuji, here!

January 2019 -- Great PRB work on SFEs for Al, Ni and Co by Xi, editors choice! here!

September 2018 / III -- PRL on coupled ab initio MD and spin dynamics for CrN online! Check it out here

September 2018 / II -- Welcome to our new group member Prashanth!

September 2018 -- Welcome to our new group member Biswanath!

August 2018 -- Impact of chemical fluctuations on stacking fault energies in HEAs by Yuji online! Check it out here

July 2018 -- (Very!) extensive review paper on ab initio for HEAs by Yuji online! Check it out here

June 2018 -- PRB on vacancy formation energies in Ni online here!

Group members

Fritz Körmann

Group head

Fritz (MPIE and TU Delft) is the head of the group which is a collaboration between researchers from the Max-Planck-Institut in Düsseldorf and the Materials Science and Engineering Department at TU Delft. GoogleScholar

Alberto Ferrari


Alberto joined the group in October 2019 as a postdoctoral researcher (TU Delft) with a scholarship from the Ruhr university in Bochum. He is working on segregation in high entropy alloys. Before joining the group Alberto worked on shape memory alloys at ICAMS, Bochum. GoogleScholar

Sheuly Ghosh


Sheuly joined the group in January 2021 as a postdoctoral researcher (MPIE). She is working on the application of machine learning potentials for magnetic materials. Before joining the group Sheuly worked on magnetic and structural properties of magnetocaloric materials at IIT Guwahati.

Lifang Zhu


Lifang joined the group in January 2020 as a postdoctoral researcher (MPIE). She is working on phase stability of refractory alloys, in particular on the solid-liquid interphase. Before joining the group Lifang worked at MPIE on phase stability of fcc elements and developed an new scheme to compute melting temperatures from ab initio.

Previous group members

Biswanath Dutta (2018 - 2021)

Konstantin Gubaev (2019 - 2021)

Prashanth Srinivasan (2018 - 2020)

Yuji Ikeda (2018 - 2019)


[67] B2 ordering in body-centered-cubic AlNbTiV refractory high-entropy alloys
F. Körmann, T. Kostiuchenko, A. Shapeev, J. Neugebauer
Phys. Rev. Mat. 5, 053803 (2021), [Link].

[66] Impact of N on the Stacking Fault Energy and Phase Stability of FCC CrMnFeCoNi: An Ab Initio Study
Y. Ikeda, F.Körmann
J. Phase Equilib. Diffus. (2021), [Link].

[65] Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy
Dae Cheol Yang, Yong Hee Jo, Yuji Ikeda, Fritz Körmann, Seok Su Sohn
J. Mater. Sci. Technol. 90, 159 (2021), [Link].

[64] Chemically induced local lattice distortions versus structural phase transformations in compositionally complex alloys
Y. Ikeda, K. Gubaev, J. Neugebauer, B. Grabowski, F. Körmann
npj Com. Mat. 7, 34 (2021), [Link].

[63] A fully automated approach to calculate the melting temperature of elemental crystals
LF. Zhu, J. Janssen, S. Ishibashi, F. Körmann, B. Grabowski, J. Neugebauer
Comp. Mat. Sci. 187, 110065 (2021), [Link].

[62] Beyond Solid Solution High‐Entropy Alloys: Tailoring Magnetic Properties via Spinodal Decomposition
Ziyuan Rao, Biswanath Dutta, Fritz Körmann, Wenjun Lu, Xuyang Zhou, Chang Liu, Alisson Kwiatkowski da Silva, Ulf Wiedwald, Marina Spasova, Michael Farle, Dirk Ponge, Baptiste Gault, Jörg Neugebauer, Dierk Raabe, Zhiming Li
Adv. Funct. Mat. 31, 2007668 (2021), [Link].

[61] Short-range order in face-centered cubic VCoNi alloys
T Kostiuchenko, AV Ruban, J Neugebauer, A Shapeev, F Körmann
Phys. Rev. Mat. 4, 113802 (2020)., [Link].

[60] Frontiers in atomistic simulations of high entropy alloys
A. Ferrari, B. Dutta, K. Gubaev, Y. Ikeda, P. Srinivasan, B. Grabowski, F. Körmann
J. Appl. Phys. 128, 150901 (2020), [Link].

[59] Surface segregation in Cr-Mn-Fe-Co-Ni high entropy alloys
A. Ferrari, F. Körmann
Appl. Sur. Sci. 553, 147471 (2020), [Link].

[58] Design of a dual-phase hcp-bcc high entropy alloy strengthened by ω nanoprecipitates in the Sc-Ti-Zr-Hf-Re system
L. Rogal, Y. Ikeda, M. Lai, F. Körmann, A. Kalinowska, B. Grabowski
Materials "&" Design 192, 108716 (2020), [Link].

[57] Performance of the standard exchange-correlation functionals in predicting melting properties fully from first principles: Application to Al and magnetic Ni
LF. Zhu, F. Körmann, A.V. Ruban, J. Neugebauer, and B. Grabowski
Phys. Rev. B 101, 144108 (2020), [Link].

[56] Role of magnetic ordering for the design of quinary TWIP-TRIP high entropy alloys
X. Wu, Z. Li, Z. Rao, Y. Ikeda, B. Dutta, F. Körmann, J. Neugebauer, and D. Raabe
Phys. Rev. Materials 4, 033601 (2020), [Link].

[55] Phonons in magnetically disordered materials: Magnetic versus phononic time scales
B. Dutta, F. Körmann, S. Ghosh, B. Sanyal, J. Neugebauer, T. Hickel
Phys. Rev. B 101, 094201 (2020), [Link].

[54] Correlation analysis of strongly fluctuating atomic volumes, charges, and stresses in body-centered cubic refractory high-entropy alloys
S. Ishibashi, Y. Ikeda, F. Körmann, B. Grabowski, J. Neugebauer
Phys. Rev. Materials 4, 023608 (2020), [Link].

[53] Unveiling the mechanism of abnormal magnetic behavior of FeNiCoMnCu high-entropy alloys through a joint experimental-theoretical study
Z. Rao, B. Dutta, F. Körmann, D. Ponge, L. Li, J. He, L. Stephenson, L. Schäfer, K. Skokov, O. Gutfleisch, D. Raabe, and Z. Li
Phys. Rev. Materials 4, 014402 (2020), [Link].

[52] Combined Al and C alloying enables mechanism-oriented design of multi-principal element alloys: Ab initio calculations and experiments
F. Kies, Y. Ikeda, S. Ewald, J. Schleifenbaum, B. Hallstedt, F. Körmann, C. Haase
Scripta Materialia 178, 366 (2020), [Link].

[51] Dislocation-induced breakthrough of strength and ductility trade-off in a non-equiatomic high-entropy alloy
W. Guo, J. Su, W. Lu, C.H. Liebscher, C. Kirchlechner, Y. Ikeda, F. Körmann, X. Liu, Y. Xue, G. Dehm
Acta Materialia 185, 45 (2020), [Link].

[50] Impact of interstitial C on phase stability and stacking-fault energy of the CrMnFeCoNi high-entropy alloy
Y. Ikeda, I. Tanaka, J. Neugebauer, F. Körmann
Phys. Rev. Materials 3, 113603 (2019), [Link].

[49] Ab initio phase stabilities of Ce-based hard magnetic materials and comparison with experimental phase diagrams
HI Sözen, S. Ener, F. Maccari, K. Skokov, O. Gutfleisch, F. Körmann, J. Neugebauer, T. Hickel
Phys. Rev. Materials 3, 084407 (2019), [Link].

[48] Ab initio vibrational free energies including anharmonicity for multicomponent alloys
B. Grabowski, Y. Ikeda, P. Srinivasan, F. Körmann, C. Freysoldt, A. Duff, A. Shapeev, J. Neugebauer
npj Comput. Mater 5, 80 (2019), [Link].

[47] Invar effects in FeNiCo medium entropy alloys: From an Invar treasure map to alloy design
Z. Rao, D. Ponge, F. Körmann, Y. Ikeda, O. Schneeweiss, M. Friák, J. Neugebauer, D. Raabe, Z. Li
Intermetallics 111, 106520 (2019), [Link].

[46] Engineering atomic-level complexity in high-entropy and complex concentrated alloys
H.S. Oh, S.J. Kim, K. Odbadrakh, W.H. Ryu, K.N. Yoon, S. Mu, F. Körmann, Y. Ikeda, C.C. Tasan, D. Raabe, T. Egami, E.S. Park
Nat. Comm. 10, 2090 (2019), [Link].

[45] Impact of lattice relaxations on phase transitions in a high-entropy alloy studied by machine-learning potentials
T. Kostiuchenko, F. Körmann, J. Neugebauer, A. Shapeev
npj Comp. Mat. 5, 55 (2019), [Link].

[44] Ultrastrong Medium‐Entropy Single‐Phase Alloys Designed via Severe Lattice Distortion
S.S. Sohn, A. Kwiatkowski da Silva, Y. Ikeda, F. Körmann, W. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe,
Adv. Mater. 31, 1807142 (2019), [Link].

[43] Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys
Y. Ikeda, B. Grabowski, F. Körmann,
Mater. Charact. 147, 464 (2019), [Link].

[42] Temperature dependence of the stacking-fault Gibbs energy for Al, Cu, and Ni
X. Zhang, B. Grabowski, F. Körmann, A.V. Ruban, Y. Gong, R.C. Reed, T. Hickel, J. Neugebauer
Phys. Rev. B 98, 224106 (2018) [https://doi.org/10.1103/PhysRevB.98.224106].

[41] Anomalous Phonon Lifetime Shortening in Paramagnetic CrN Caused by Spin-Lattice Coupling: A Combined Spin and Ab Initio Molecular Dynamics Study
Irina Stockem, Anders Bergman, Albert Glensk, Tilmann Hickel, Fritz Körmann, Blazej Grabowski, Jörg Neugebauer, Björn Alling
Phys. Rev. Lett. 121, 125902 (2018) [https://doi.org/10.1103/PhysRevLett.121.125902].

[40] Impact of Chemical Fluctuations on Stacking Fault Energies of CrCoNi and CrMnFeCoNi High Entropy Alloys from First Principles
Y. Ikeda, F. Körmann, I. Tanaka, J. Neugebauer,
Entropy 20, 655 (2018) [http://www.mdpi.com/1099-4300/20/9/655].

[39] Temperature dependence of the Gibbs energy of vacancy formation of fcc Ni
Y. Gong, B. Grabowski, A. Glensk, F. Körmann, J. Neugebauer, R.C. Reed,
Phys. Rev. B 97, 214106 (2018) [https://doi.org/10.1103/PhysRevB.97.214106].

[38] Temperature-dependent phonon spectra of magnetic random solid solutions
Y. Ikeda, F. Körmann, B. Dutta, A. Carreras, A. Seko, J. Neugebauer, I. Tanaka
npj Comput. Mater 4, 7 (2018) [doi:10.1038/s41524-018-0063-1].

[37] Impact of Co and Fe doping on the martensitic transformation and the magnetic properties in Ni-Mn-based Heusler alloys
B. Dutta, F. Körmann, T. Hickel, J. Neugebauer
Phys. Status Solidi B 255, 1700455 (2018) [doi:10.1002/pssb.201700455].

[36] Operando phonon studies of the protonation mechanism in highly active hydrogen evolution reaction pentlandite catalysts
I. Zegkinoglou, A. Zendegani, I. Sinev, S. Kunze, H. Mistry, HS. Jeon, J. Zhao, M. Hu, E.E. Alp, S. Piontek, M. Smialkowski, U-.P. Apfel, F. Körmann, J. Neugebauer, T. Hickel, B. Roldan Cuenya,
J. Am. Chem. Soc. 139, 14360 (2017).

[35] Phonon broadening in High Entropy Alloys
F. Körmann, Y. Ikeda, B. Grabowski, M.H.F. Sluiter
npj Comput. Mater. 3, 36 (2017).

[34] Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity
Z. Li, F. Körmann, B. Grabowski, J. Neugebauer, D. Raabe
Acta Mat. 136, 262 (2017).

[33] Computationally-driven engineering of sublattice ordering in a hexagonal AlHfScTiZr high entropy alloy
L. Rogal, P. Bobrowski, F. Körmann, S. Divinski, F. Stein, B. Grabowski
Sci. Rep. 7, 2209 (2017).

[32] Atomistic modelling-based design of novel materials
D. Holec, L. Zhou, H. Riedl, C.M. Koller, P.H. Mayrhofer, M. Friak, M. Sob, F. Körmann, J. Neugebauer, D. Music, M.A. Hartmann, F.D. Fischer,
Adv. Eng. Mater. 19, 1600688 (2017).

[31] Accurate electronic free energies of the 3d, 4d, and 5d transition metals at high temperatures
X. Zhang, B. Grabowski, F. Körmann, C. Freysoldt, J. Neugebauer,
Phys. Rev. B 95, 165126 (2017).

[30] Long-ranged interactions in bcc NbMoTaW high-entropy alloys
F. Körmann, A.V. Ruban, und M.F.H. Sluiter
Mater. Res. Lett. 5, 35 (2017).

[29] Lattice Distortions in the FeCoNiCrMn High Entropy Alloy Studied by Theory and Experiment
H.S. Oh, D. Ma, G.P. Leyson, B. Grabowski, E.S. Park, F. Körmann, D. Raabe
Entropy 18, 321 (2016).

[28] Interplay between lattice distortions, vibrations and phase stability in NbMoTaW high entropy alloys
F. Körmann, und M.F.H. Sluiter
Entropy 18, 403 (2016).

[27] Strong impact of lattice vibrations on electronic and magnetic properties of paramagnetic Fe revealed by disordered local moments molecular dynamics
B. Alling, F. Körmann, B. Grabowski, A. Glensk, I. Abrikosov, und J. Neugebauer
Phys. Rev. B 93, 224411 (2016).

[26] Impact of magnetic fluctuations on lattice excitations in fcc nickel
F. Körmann, P-.W. Ma, S.L. Dudarev, und J. Neugebauer
J. Phys. Condens. Matter 28, 076002 (2016).

[25] , Quaternary Al-Cu-Mg-Si Q Phase: Sample Preparation, Heat Capacity Measurement and First-Principles Calculations
A. Löffler, A. Zendegani, J. Gröbner, M. Hampl, R. Schmid-Fetzer, H. Engelhardt, M. Rettenmayr, F. Körmann, T. Hickel, und J. Neugebauer
J. Phase Equilib. Diff. 37, 119 (2016).

[24] Partitioning of Cr and Si between cementite and ferrite derived from first-principles thermodynamics
H. Sawada, K. Kawakami, F. Körmann, B. Grabowski, T. Hickel, und J. Neugebauer
Acta Mat. 102, 241 (2016).

[23] Influence of magnetic excitations on the phase stability of metals and steels
F. Körmann, T. Hickel, und J. Neugebauer
Curr. Opin. Solid. St. M. 20, 77 (2016).

[22] "Treasure maps" for magnetic high-entropy-alloys from theory and experiment
F. Körmann, D. Ma, M. Lucas, D. Belyea, C. Miller, B. Grabowski, und M.H.F. Sluiter
Appl. Phys. Lett. 107, 142404 (2015).

[21] Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one
D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, und D. Raabe
Acta Mat. 100, 90 (2015).

[20] Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment
F. Körmann, B. Grabowski, B. Dutta, T. Hickel, L. Mauger, B. Fultz, und J. Neugebauer
Phys. Rev. Lett. 113, 165503 (2014).

[19] Structural stability and thermodynamics of CrN magnetic phases from ab initio calculations and experiment
L. Zhou, F. Körmann, D. Holec, M. Bartosik, B. Grabowski, J. Neugebauer, und P. Mayrhofer
Phys. Rev. B 90, 184102 (2014).

[18] Influence of the dislocation core on the glide of the edge dislocation in bcc-iron: An embedded atom method study
S. M. H. Haghighat, J. von Pezold, C. Race, F. Körmann, M. Friák, J. Neugebauer, und D. Raabe
Comput. Mater. Sci. 87, 274 (2014).

[17] Spin-wave method for the total energy of paramagnetic state
A.V. Ruban, V. Razumovskiy, und F. Körmann
Phys. Rev. B 89, 179901(E) (2014).

[16] Lambda transitions in materials science: Recent advances in CALPHAD and first‐principles modelling
F. Körmann, A. Breidi, S.L. Dudarev, N. Dupin, G. Ghosh, T. Hickel, P. Korzhavyi, J. Muñoz, und I. Ohnuma
Phys. Status Solidi 251, 53 (2014).

[15] Reliability evaluation of thermophysical properties from first-principles calculations
M. Palumbo, S. Fries, A. D. Corso, F. Körmann, T. Hickel, und J. Neugebauer
J. Phys.: Condens. Matter 26, 335401 (2014).

[14] Thermodynamic modeling of chromium: strong and weak magnetic coupling
F. Körmann, B. Grabowski, P. Söderlind, M. Palumbo, S. Fries, T. Hickel, und J. Neugebauer
J. Phys.: Condens. Matter 25, 425401 (2013).

[13] Atomic forces at finite magnetic temperatures: Phonons in paramagnetic iron
F. Körmann, A. Dick, B. Grabowski, T. Hickel, und J. Neugebauer Phys. Rev. B 85, 125104 (2012).

[12] Advancing density functional theory to finite temperatures: methods and applications in steel design
T. Hickel, B. Grabowski, F. Körmann, und J. Neugebauer
J. Phys.: Condens. Matter 24, 053202 (2012).

[11] Role of spin quantization in determining the thermodynamic properties of magnetic transition metals
F. Körmann, A. Dick, T. Hickel, und J. Neugebauer
Phys. Rev. B 83, 165114 (2011).

[10] Ab initio based determination of thermodynamic properties of cementite including vibronic, magnetic, and electronic excitations
A. Dick, F. Körmann, T. Hickel, und J. Neugebauer
Phys. Rev. B 84, 125101 (2011).

[9] Determining the Elasticity of Materials Employing Quantum‐mechanical Approaches: From the Electronic Ground State to the Limits of Materials Stability
M. Friak, T. Hickel, F. Körmann, A. Udyansky, A. Dick, J. von Pezold, D. Ma, O. Kim, W. Counts, M. Šob, T. Gebhardt, D. Music, J. Schneider, D. Raabe, und J. Neugebauer
Steel Res. Int. 82, 86 (2011).

[8] Thermodynamic properties of cementite
B. Hallstedt, D. Djurovic, J. von Appen, R. Dronskowski, A. Dick, F. Körmann, T. Hickel, und J. Neugebauer
Calphad 34, 129 (2010).

[7] Rescaled Monte Carlo approach for magnetic systems: Ab initio thermodynamics of bcc iron
F. Körmann, A. Dick, T. Hickel, und J. Neugebauer
Phys. Rev. B 81, 134425 (2010).

[6] Pressure dependence of the Curie temperature in bcc iron studied by ab initio simulations
F. Körmann, A. Dick, T. Hickel, und J. Neugebauer
Phys. Rev. B 79, 184406 (2009).

[5] Steel Design from Fully Parameter‐Free Ab Initio Computer Simulations
T. Hickel, A. Dick, B. Grabowski, F. Körmann, und J. Neugebauer
Steel Res. Int. 80, 4 (2009).

[4] Free energy of bcc iron: Integrated ab initio derivation of vibrational, electronic, and magnetic contributions
F. Körmann, A. Dick, B. Grabowski, B. Hallstedt, T. Hickel, und J. Neugebauer
Phys. Rev. B 78, 033102 (2008).

[3] Cu cap layer on Ni8/Cu (001): reorientation and TC-shift
F. Körmann, J. Kienert, S. Schwieger, und W. Nolting
Eur. Phys. J. B 65, 499 (2008).

[2] Green function theory versus quantum Monte Carlo calculations for thin magnetic films
S. Henning, F. Körmann, J. Kienert, S. Schwieger, und W. Nolting
Phys. Rev. B 75, 214401 (2007).

[1] A new type of temperature driven reorientation transition in magnetic thin films
F. Körmann, S. Schwieger, J. Kienert, und W. Nolting
Eur. Phys. J. B 53, 463 (2006).

Interested in joining the team?

Please contact me if your are interested in joining the team for a master thesis, PhD project, PostDoc or visiting researcher in our group.

Top page

Privacy Policy

Personal data (usually referred to just as "data" below) will only be processed by us to the extent necessary and for the purpose of providing a functional and user-friendly website, including its contents, and the services offered there.

Per Art. 4 No. 1 of Regulation (EU) 2016/679, i.e. the General Data Protection Regulation (hereinafter referred to as the "GDPR"), "processing" refers to any operation or set of operations such as collection, recording, organization, structuring, storage, adaptation, alteration, retrieval, consultation, use, disclosure by transmission, dissemination, or otherwise making available, alignment, or combination, restriction, erasure, or destruction performed on personal data, whether by automated means or not.

The following privacy policy is intended to inform you in particular about the type, scope, purpose, duration, and legal basis for the processing of such data either under our own control or in conjunction with others. We also inform you below about the third-party components we use to optimize our website and improve the user experience which may result in said third parties also processing data they collect and control.

Our privacy policy is structured as follows:

I. Information about us as controllers of your data
II. The rights of users and data subjects
III. Information about the data processing

I. Information about us as controllers of your data

The party responsible for this website (the "controller") for purposes of data protection law is:

Dr. Fritz Körmann

II. The rights of users and data subjects

With regard to the data processing to be described in more detail below, users and data subjects have the right

  • to confirmation of whether data concerning them is being processed, information about the data being processed, further information about the nature of the data processing, and copies of the data (cf. also Art. 15 GDPR);
  • to correct or complete incorrect or incomplete data (cf. also Art. 16 GDPR);
  • to the immediate deletion of data concerning them (cf. also Art. 17 DSGVO), or, alternatively, if further processing is necessary as stipulated in Art. 17 Para. 3 GDPR, to restrict said processing per Art. 18 GDPR;
  • to receive copies of the data concerning them and/or provided by them and to have the same transmitted to other providers/controllers (cf. also Art. 20 GDPR);
  • to file complaints with the supervisory authority if they believe that data concerning them is being processed by the controller in breach of data protection provisions (see also Art. 77 GDPR).

In addition, the controller is obliged to inform all recipients to whom it discloses data of any such corrections, deletions, or restrictions placed on processing the same per Art. 16, 17 Para. 1, 18 GDPR. However, this obligation does not apply if such notification is impossible or involves a disproportionate effort. Nevertheless, users have a right to information about these recipients.

Likewise, under Art. 21 GDPR, users and data subjects have the right to object to the controller's future processing of their data pursuant to Art. 6 Para. 1 lit. f) GDPR. In particular, an objection to data processing for the purpose of direct advertising is permissible.

III. Information about the data processing

Your data processed when using our website will be deleted or blocked as soon as the purpose for its storage ceases to apply, provided the deletion of the same is not in breach of any statutory storage obligations or unless otherwise stipulated below.

Model Data Protection Statement for Anwaltskanzlei Weiß & Partner

Last updated: 10.10.2021 [FK]